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Abstract We study bootstrap percolation (BP) on hyperbolic lattices obtained by regular
tilings of the hyperbolic plane. Our work is motivated by the connection between the BP
transition and the dynamical transition of kinetically constrained models, which are in turn
relevant for the study of glass and jamming transitions. We show that for generic tilings
there exists a BP transition at a nontrivial critical density, 0 < ρc < 1. Thus, despite the
presence of loops on all length scales in hyperbolic lattices, the behavior is very different
from that on Euclidean lattices where the critical density is either zero or one. Furthermore,
we show that the transition has a mixed character since it is discontinuous but characterized
by a diverging correlation length, similarly to what happens on Bethe lattices and random
graphs of constant connectivity.

Keywords Bootstrap percolation · Hyperbolic lattices · Kinetically constrained models

1 Introduction

The effect of geometry, and more specifically of the curvature of the embedding space, on
phase transitions in the context of statistical mechanics or quantum field theory has attracted
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continued interest among mathematicians and physicists. In the present work, we focus on
bootstrap percolation on hyperbolic lattices obtained by regular tilings of the hyperbolic
(negatively curved) plane. Bootstrap percolation (BP) with blocking parameter m is defined
by the following deterministic evolution: starting from a configuration in which each lattice
site is independently occupied with a given probability ρ, occupied sites are emptied if
they have fewer than m occupied neighbors and the process is repeated until reaching a
configuration that can no longer be evolved, i.e. one which only contains empty sites and
occupied sites with m or more occupied neighbors. A site is said blocked for the initial
configuration if it is occupied in the corresponding final configuration. We investigate the
occurrence and the properties of infinite clusters of blocked sites when varying the initial
density ρ.

This study has both mathematical and physical motivations. Concerning the former, it
connects to the series of studies on phase transitions on “nonamenable graphs” [7, 24, 40],
nonamenability being a notion that informally speaking refers to graphs with a nonvanishing
surface (boundary) to volume (bulk) ratio. On the more physical side, it is driven by a line of
research on phenomena such as glass and jamming transitions in liquids and related systems.
There is an admittedly long route from BP on hyperbolic lattices to glassforming liquids,
and the (heuristic) connection that goes through notions such as “geometric frustration”
in condensed matter and schematic descriptions of slow dynamics in terms of “kinetically
constrained models” will be discussed in more detail below.

We show that, for a large choice of tilings and blocking parameters, there is a nontrivial
critical density 0 < ρc < 1 such that infinite clusters of blocked sites only occur when the
density ρ of the occupied sites of the initial configuration satisfies ρ ≥ ρc. Although we
resort to rather casual physicists’ language in the present article, the proof is rigorous and
will be presented with due formalism and rigor in a subsequent publication [50]. Further-
more we present strong evidence that this transition has a discontinuous order parameter: the
probability that a given site is blocked displays a jump at ρc . Similarly to its counterpart on
tree-like structures such as Bethe lattices and random graphs of constant connectivity [20,
41], this transition has features of both first-order and second-order phase transitions, namely
a discontinuity in the order parameter and a diverging correlation length.

Note that there could be another percolation threshold at a higher density ρu > ρc such
that for ρc < ρ < ρu there is an infinite number of disconnected (infinite) clusters of blocked
sites with a unique cluster occurring only above ρu. This second transition indeed occurs for
site percolation on hyperbolic lattices and nonamenable graphs [9, 22, 23]. It also takes
place for BP on Cayley trees and in this case it can be thought of as a boundary-induced
phenomenon. We do not investigate this aspect for BP on hyperbolic lattices since it is of
less interest in the context of glassforming systems.

The paper is organized as follows. In Sect. 2, we outline the arguments that support the
possible relevance of BP on hyperbolic lattices to the study of glass and jamming transi-
tions and we establish the connection between BP and kinetically constrained models for
glassy dynamics. In Sect. 3, we give basic information concerning the hyperbolic plane and
hyperbolic lattices and we recall how one can construct appropriate trees embedded in the
hyperbolic lattices. Section 4 contains the main analytical result, i.e. the existence of a BP
transition on hyperbolic lattices, and a sketch of the proof while Sect. 5 contains our re-
sults concerning the order of the transition. The latter are obtained by combining analytical
results on Cayley trees, conjectures on the effect of boundary conditions for BP on nona-
menable graphs and a numerical study. Finally, we give some concluding remarks, and a
more technical point is discussed in Appendix.
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2 Glass Transition, Kinetically Constrained Models and Hyperbolic Plane

2.1 Glass Formation and Geometric Frustration

As already mentioned, one motivation for the present study comes from phenomena associ-
ated with glass and jamming transitions. The glass transition of liquids, colloids and poly-
mers refers to the formation under cooling or compressing of an amorphous phase which
can no longer flow on the observation time scale and then appears as a solid. A related phe-
nomenon exists in dense granular assemblies and in foams as these systems get clogged or
jammed when the external drive that made them move and flow becomes too small.

Among the numerous theoretical approaches proposed to explain glass formation and
jamming, one relates the observed slowing down of dynamics to the presence of “geomet-
ric frustration” [29, 36, 45]. The latter describes a competition between global and local
constraints whose manifestation is an impossibility to tile the whole space by extending the
local structure characteristic of the liquid (or of any other glassforming system). Along these
lines, a minimal model is provided by a two-dimensional atomic fluid of disks embedded in
the hyperbolic plane [28, 35, 38]. The negative curvature of space prevents the extension of
the local hexagonal order and generates frustration. It was found in a computer simulation
study [38] that as the liquid is cooled, crystallization in hexagonal or related structures is
avoided whereas the relaxation time increases rapidly and leads at low temperature to glass
formation when the system no longer equilibrates on simulation time scales. At low enough
temperature, it was observed that the dynamics is dominated by rare curvature-induced de-
fect structures that are separated on average by a distance of the order of the “radius of
curvature” κ−1 of the embedding space (the Gaussian curvature of the hyperbolic plane is
K = −κ2).

Studying the dynamics of the glassforming liquid on the hyperbolic plane at lower tem-
perature and following the possibly collective kinetics of the defects is in practice out of
reach for computer simulation. To get some insight, one possible strategy is to resort to
an even cruder model description: this brings us to the so-called “kinetically constrained
models”. Such models form the core of another line of thought on glassy systems, one that
envisages glass formation as a purely kinetic phenomenon with little or no thermodynamic
and structural input [17]. Slowing down of the relaxation to equilibrium as temperature is
decreased is attributed to the emergence of kinetic constraints that restrain the dynamics
of the system. Those constraints are introduced in an explicit but ad hoc way in a series
of lattice models. Before introducing the more specific model we have in mind, it is worth
stressing that the collective nature of the dynamics captured in the above simulations and the
one which is describable by kinetically constrained models on the hyperbolic lattice involve
different scales: roughly below the radius of curvature κ−1 for the former (due to limited
computer resources) and above for the latter (as a consequence of the hyperbolic metric, the
basic step of the tiling is always at least of order κ−1, see Sect. 3).

2.2 Kinetically Constrained Models and Bootstrap Percolation

The kinetically constrained model we focus on is the one introduced by Fredrickson and
Andersen (FA) in [16]. Given a graph G with vertex set V and edge set E, one has on each
vertex i ∈ V an Ising spin variable, σi = ±1.

The Hamiltonian is trivial, H = − 1
2

∑
i σi , i.e. the spins do not interact and, hence, the

equilibrium distribution is a product measure. On the other hand, the Monte Carlo spin
dynamics is subjected to a kinetic constraint: at each time step a randomly chosen spin, say
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i, is flipped with the standard rate w(σi → −σi) = min{1, e−βσi }, if and only if the number of
nearest neighbors (i.e. vertices connected by an edge to i) which are in the state −1 is larger
than or equal to a fixed value f , which is called the facilitation parameter (β = 1/T is the
inverse temperature, with the Boltzmann constant set to 1). Physically, plus and minus spins
can be thought of as describing small regions of low and high mobility in a glassforming
system.

The FA model is one of the most studied kinetically constrained models. On Cayley
trees and on Bethe lattices of constant connectivity q , the FA model displays a dynamical
transition for 1 < f < q − 1 [30, 33, 42] which is very similar to the ideal discontinuous
transition described by the Mode Coupling Theory of glassforming liquids [10, 18] while
for f = q − 1 a transition takes place with an ergodicity breaking parameter equal to zero.
On the other hand, on any finite-dimensional hypercubic (Euclidean) lattice, this dynamical
transition is wiped out by the diffusion of very rare cooperative defects [32, 48, 49], thus
supporting the “mean-field” character of the transition. Despite the absence of a true dynam-
ical transition, the FA model on Euclidean lattices displays an interesting glassy behavior
including a faster than Arrhenius growth of the relaxation times as the temperature goes to
zero when f > 1 [34]. The mechanism which is responsible for this strong slowing down
is that, as the temperature is lowered, −1 spins become rarer while the typical size of the
regions which should be cooperatively rearranged in order to satisfy the constraint at a given
site becomes larger. Here, we analyze the behavior of the FA model on hyperbolic lattices.

Remarkably, the study of the dynamical glass transition of the FA model can be reduced
to the analysis of a static phase transition called bootstrap percolation (BP) [12]. In BP
one starts from an initial configuration in which each vertex of the graph G is occupied
by a particle with probability ρ and empty with probability 1 − ρ. Then, one randomly
removes particles that have fewer than m neighboring occupied sites; thus m is called the
blocking parameter. Iterating this procedure leads to two possible asymptotic results: either
the lattice is completely empty, or the remaining occupied sites are all mutually blocked. We
let ρc(G,m) denote the critical threshold above which blocked clusters occur. We recall that
when G is a Euclidean lattice, ρc = 1 for d < m ≤ 2d , and ρc = 0 otherwise [39, 51]. On
the other hand, on infinite Cayley trees, Bethe lattices and random graphs of connectivity q ,
ρc = 1 if m = q , ρc = 0 if m = 1, and 0 < ρc < 1 if 1 < m < q [12].

The connection with the FA model emerges by noticing that if the graph has constant con-
nectivity q , as the lattices we focus on, the BP procedure can equivalently be formulated by
saying that one removes a particle if it has at least f = q + 1 −m empty neighbours.1 In ad-
dition, one has to identify plus (minus) spins with filled (empty) sites, ρ with the probability
for a spin to be equal to +1, i.e. ρ = 1/(1+exp(−β)), and m with m(f ) = q −f +1. Then,
it is easy to verify that if for a given initial configuration, the BP procedure ends up with
the whole lattice emptied, there exists for the corresponding spin configuration a sequence
of spin flips, each satisfying the kinetic constraint, that brings the configuration to that with
all spins in the −1 state. As a result, all spins can eventually flip if 1/(1 + exp(−β)) < ρc .
Although this is not a guarantee of ergodicity in general, it is so for KCM’s, as proved
in [11]. (The underlying reason is that because of their trivial thermodynamic measure, the
only ergodicity breaking that can take place is a “reducibility transition” at which the con-
figuration space becomes disconnected in several pieces, each piece containing roughly the
same number of configurations: see [46, 47] for a more detailed discussion.) Conversely, if
the BP ends up with a nonempty cluster of blocked sites, the latter is by construction formed

1If the graph does not have constant connectivity and one fixes the facilitation parameter, the procedure does
not correspond to one with fixed blocking parameter.
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by all the plus spins that will never move under FA dynamics. Thus, the occurrence of a BP
transition is a necessary and sufficient condition for the existence of an ergodicity breaking
transition in the corresponding FA model. Furthermore, if the BP transition is discontinuous,
i.e. if the fraction of blocked sites is strictly positive at ρc, the dynamical transition for FA
is also discontinuous. One can indeed show [46, 47] that, due to the occurrence of a finite
fraction of blocked spins, the local time-dependent spin correlation function relaxes to a
finite plateau at ρc (while below ρc it relaxes to zero).

In conclusion, the existence of a dynamical transition for the FA model and some prop-
erties of this transition can be studied by focusing on the much simpler static problem of
the BP. This is what we have done for hyperbolic lattices. We postpone a direct investi-
gation of the detailed dynamic behavior of kinetically constrained models on such lattices
for future work, but it is worth pointing out that the nature of the transition (continuous or
first-order) has strong implications for the dynamics in both the ergodic and the nonergodic
phases. For instance, a first-order transition comes with a characteristic two-step relaxation
to equilibrium which emerges as one approaches the transition from the ergodic phase.

3 Hyperbolic Lattices

3.1 General Description

The hyperbolic plane H 2, also called pseudosphere or Bolyai-Lobatchevski plane, is a Rie-
mannian surface of constant negative curvature [13, 19]. Contrary to a sphere, which is a
surface of constant positive curvature, H 2 is infinite and cannot be embedded as a whole in
the three-dimensional Euclidean space. “Models”, i.e. projections, must thus be used for its
visualization. The hyperbolic metric in polar coordinates (r,φ) is given by

ds2 = dr2 +
(

sinh(κr)

κ

)2

dφ2 (1)

with −κ2 < 0 the Gaussian curvature. In the following, to represent hyperbolic lattices, we
use the Poincaré disk model that maps the whole infinite space H 2 onto the open disk of
radius unity. This projection (r ′ = tanh(κr/2),φ′ = φ) is conformal, i.e. it preserves the
angles, but is not isometric: the Euclidean distance between two points of the disk separated
by a given distance in H 2 shrinks to zero when the points approach the disk perimeter (see
Fig. 1).

In this work, we consider hyperbolic lattices resulting from regular tilings or “tessella-
tions” of the hyperbolic plane. Such tilings are generated by elements of discrete subgroups
of the isometry group of H 2, also called Fuchsian groups [31]. Each regular tessellation is
characterized by the number p of faces (i.e. edges in two dimensions) of the primitive cell
and the number q of adjacent cells meeting at any vertex of the tiling; they will be denoted
by the Schläfli symbol {p,q}. In the hyperbolic plane, regular tessellations exist provided

(p − 2)(q − 2) > 4, (2)

which allows an infinite number of possibilities [13, 14, 19]. The integers p and q can thus
vary between 3 and ∞. Note that the cases in which either p or q is infinite (but not both)
are well defined: for instance, the lattice {∞, q} is a tree of connectivity q (see Fig. 1).

The negative curvature of the space in which these lattices are embedded imposes strong
geometrical constraints that give rise to quite different properties than those encountered in
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Fig. 1 {∞,3} hyperbolic tiling
in the Poincaré disk
representation of the hyperbolic
plane. The graph formed by the
vertices and the edges of the
tiling has a tree structure. Note
the presence of infinite loops
which are the discrete analogs of
horocircles (see Appendix). If
periodic boundary conditions are
employed, this lattice can then be
considered as a Bethe lattice

the more familiar Euclidean lattices. First, once {p,q} have been fixed, the length of the
polygon sides is also fixed and it is at least of the order κ−1 [8]: this is why kinetically
constrained models on hyperbolic lattices can only explore length scales above κ−1. Fur-
thermore, the metric of the hyperbolic plane given in (1) induces that for a hyperbolic disk

of radius r in H 2, the ratio of its perimeter to its area is given by 2πκ−1 sinh(κr)

4πκ−2 sinh2( κr
2 )

and goes to a

nonzero value, κ , when κr → ∞. Thus, surface (boundary) effects can never be neglected in
the hyperbolic plane. The same reasoning carries over to hyperbolic lattices which therefore
belong to the class of nonamenable graphs [24]: graphs with a nonzero “edge-isoperimetric
constant”, i.e. such that the number of edges between vertices of the graph and the exterior
scales like the number of interior edges. Cayley trees are examples of nonamenable graphs
(but random graphs are amenable). Nonamenable graphs share common properties [24]: they
are in some sense infinite-dimensional and lead in many cases to phase transitions having
mean-field character [40].

3.2 Relation with Trees

In this section we describe tree-like structures which can be embedded into hyperbolic lat-
tices and will be useful in the analysis of the BP transition. For all hyperbolic lattices with
p > 4, by cutting appropriate links one can construct spanning trees with vertices of con-
nectivity q and q − 1. The general procedure to build such spanning trees will be detailed in
[50]. It relies on a modification of the procedure devised in [25] to build trees that cover the
hyperbolic lattices but contain additional edges which are not present in the original lattice.2

2Our modification guarantees that vertices which are neighbors on the tree are necessarily neighbors on the
lattice, unlike the tree resulting from the procedure in [25]. This is done as follows: whenever there are j

links that connect a polygon of generation i to polygons of generation i + 1, . . . , i + j in the spanning trees
of [25], we substitute the l-th link with a link between the polygon of generation i + (l − 1) and the one of
generation i + l.
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Fig. 2 Part of the {6,5}
hyperbolic tiling in the Poincaré
disk representation of the
hyperbolic plane: (a) full lattice
with loops; (b) spanning tree
with discarded edges shown as
red dotted lines. Note the small
number of edges that one needs
to cut to avoid loops

Finally, note that for p = 4 a similar procedure exists but the connectivity of vertices is q −1
and q − 2 [26].

The existence of these spanning trees with mixed connectivity also implies that a Cayley
tree of constant connectivity q − 1 (respectively, q − 2) obtained by cutting some addi-
tional edges in the above spanning trees can be embedded in a hyperbolic lattice {p,q} for
p > 4 (respectively, p = 4). This regular tree is not spanning but one can easily build a
collection of such regular trees which are overlapping and whose union covers the whole
lattice. An example of spanning tree for the {6,5} lattice (which will be studied in de-
tail in the following) is shown in Fig. 2b. Note that vertices are not all equivalent: there
are two types of vertices with connectivity 5 (depending on whether one or two of their
direct descendants have connectivity 4) and one type with connectivity 4, as shown in
Fig. 3.
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Fig. 3 (Color online) Part of a
tree with mixed connectivity
(5,4) that spans the {6,5}
hyperbolic lattice. Edges
indicated by the dotted lines
correspond to branches of the
original lattice pruned to avoid
loops. The blue edges correspond
to an hexagon of the original
{6,5} lattice. In this spanning
tree, vertices are not equivalent
and three different types are
present, which depend on their
descendants: ◦ possesses three
descendants (∗•,•,•), • has four
descendants (∗•,•,•,◦) and ∗•
has four descendants (◦, ∗•,•,◦).
Note that the top vertex has also
one parent, not shown in the
figure

4 Existence of a Bootstrap Percolation Transition on Hyperbolic Lattices

4.1 Sketch of the Proof

Compared to standard bond and site percolation that has been quite thoroughly studied on
hyperbolic lattices and nonamenable graphs [3, 9, 22, 23, 40], BP has received less atten-
tion. It has been solved on Bethe lattices and Cayley trees [12] and the result ρc < 1 has
also been proved on other nonamenable graphs under appropriate conditions on the graph
topology [7]. Here, we adopt a strategy that is specifically devised for hyperbolic lattices
and we consider generic values of m and of the lattice parameters p and q . Let us start by
stressing that even if the hyperbolic lattices {p,q} are nonamenable, they have loops (cy-
cles) on all length scales for finite p and q . Thus they share at the same time properties of
trees (nonamenability) and of Euclidean lattices (loops on all length scales). It is therefore
a priori unclear if a BP transition at a nontrivial density should be expected as on trees or if
the presence of finite loops wipes out the BP transition as in Euclidean lattices.

For some choices of the parameters m,p and q (m = 2 whatever p,q and m = 3,p = 3
whatever q , see Appendix), there exist finite blocked clusters for any ρ > 0. These cases
are not very interesting from the physical point of view since the corresponding FA model
is nonergodic at any nonzero density (i.e., trivially, ρc = 0), whereas an ergodicity-breaking
transition only makes physical sense if it is due to an infinite cluster of jammed particles. We
disregard these cases and focus on lattices characterized by p > 3,m > 2 and p = 3,m > 3.
As explained in Appendix, it is only in these cases that blocked clusters are necessarily
infinite. In addition, we do not consider the case m = q (f = 1) which leads to an all empty
configuration as soon as there exists at least one empty site in the initial configuration (thus,
trivially, ρc = 1).

We now state some basic results that will be useful for the analysis of BP with blocking
parameter m on a graph G. Consider a subgraph G̃ ⊂ G, then the following inequality holds
between the BP thresholds:

ρc(G,m) ≤ ρc(G̃,m). (3)

The reason is that a blocked configuration on G̃ is also blocked on G because adding links
cannot help unblocking a structure: the number of blocked neighbors in G can only increase
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or remain equal to the value in G̃. The other important inequality that will be needed in
the following concerns ρc(G,f ), the critical density on the graph G with the facilitation
parameter f .

If instead G̃ contains all the vertices and a subset of the edges of G and we perform BP
with constant facilitation parameter f we obtain

ρc(G,f ) ≥ ρc(G̃, f ). (4)

The reason is that an unblocked configuration on G̃ is also unblocked on G because adding
links can only increase or leave constant the number of empty neighbors of a given site.
A direct consequence of this result is that if we have a collection of (possibly overlapping)
graphs G̃i ⊂ G such that their union

⋃
i G̃i covers G, then it analogously follows that

ρc(G,f ) ≥ inf
i

ρc(G̃i, f ). (5)

Finally, we note that on lattices with a fixed connectivity q , as for the hyperbolic lattices,
ρc(G,f ) = ρc(G,m(f )) = ρc(G,q + 1 − f ). As a consequence, the two inequalities (5)
and (3) allow us to obtain lower and upper bounds on the critical BP density on hyperbolic
lattices.

As explained in Sect. 3.2, there exists for the hyperbolic lattice {p,q} with p > 4 a
sequence of Cayley trees G̃ of constant connectivity q̃ = q − 1 that covers the lattice. Thus,
we can apply (3) and (5) to BP with blocking parameter m on the lattice {p,q}, noticing
that ρc(G̃, f ) = ρc(G̃, q̃ − f + 1) = ρc(G̃,m − 1) (recall that the facilitation parameter for
a hyperbolic lattice {p,q} is q + 1 − m). Hence, we obtain:

ρc(T
q−1,m − 1) ≤ ρc({p,q},m) ≤ ρc(T

q−1,m), (6)

where we have used the notation T q to indicate an infinite tree of constant connectivity q .
As we have already recalled in Sect. 2.2, if 2 ≤ m < q − 1, then 0 < ρc(T

q−1,m) < 1
(see e.g. [12]). Therefore, we conclude that a BP transition also occurs on {p,q} hyper-
bolic lattices with p > 4, q > 4 for 3 ≤ m < q − 1 since we obtain 0 < ρc(T

q−1,m − 1) ≤
ρc({p,q},m) ≤ ρc(T

q−1,m) < 1. The case m = q − 1 requires special care in order to
prove that the critical density is bounded away from one. We will give a specific example
(m = 4, q = 5, p = 6) of how to prove this result in the next section. Analogously, by using
the embedded trees of connectivity q − 2 for the case p = 4 one immediately obtains that
0 < ρc < 1 when 4 ≤ m ≤ q − 2. The other cases will be treated in a forthcoming publica-
tion [50].

By similar arguments and using the spanning trees with mixed connectivities q and q −1,
one can establish tighter bounds on the critical density as will be illustrated in the next
section for the {6,5} lattice.

4.2 Illustration: the {6,5} Lattice with m = 3

For the {6,5} lattice, a possible spanning tree with mixed connectivity 4 and 5, which will
be denoted by T 4,5, is shown in Figs. 2b and 3. The construction rules follow the procedure
of [25] with the modification explained in Sect. 3.2 (see caption of Fig. 3).

We now derive ρc(T
4,5,3) and ρc(T

4,5,3) which, thanks to inequalities (3) and (4),
respectively provide an upper and a lower bound to the critical density ρc({6,5},3) =
ρc({6,5},3) of the hyperbolic lattice under consideration.
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As explained in the caption of Fig. 3, the vertices of the tree are of three different types,
corresponding to two different connectivities. Thanks to the tree structure and following the
same method as in [42, 49], one can write for each type of vertex a recurrence relation on
the probability P that a site is blocked assuming that its “parent” vertex is itself blocked.
For instance, by considering a vertex of type ◦ (see Fig. 3), one can derive its probability
P◦ as a function of the probabilities of its descendants which are of types ∗• and •, i.e. P∗•
and P•. The procedure can be repeated for vertices of the two other types and this provides
equations relating the probabilities P◦,P∗• and P• at two successive generations of the tree.
Then, we perform the standard “Bethe lattice” trick which consists of considering only the
deep interior of the tree and assuming that all vertices of the same type are equivalent.3 As
can be shown on the Cayley tree, this procedure that amounts to avoiding boundary effects
does not affect the location of the threshold at ρc (see below for a more detailed discussion).
This leads to the following set of coupled equations for BP with blocking parameter m = 3:

⎧
⎪⎨

⎪⎩

P◦ = ρ P• (P• + 2P∗• (1 − P•))
P∗• = ρ

(
P 2◦ + 2P◦(1 − P◦)(P∗• + P•) + P∗•P•(1 − 4P◦ + 3P 2◦ )

)

P• = ρ
(
P 2• + 2P•(1 − P•)(P∗• + P◦) + P∗•P◦(1 − 4P• + 3P 2• )

)
,

(7)

and for BP with facilitation parameter f = 3:

⎧
⎪⎨

⎪⎩

P◦ = ρ
(
1 − (1 − P∗•)(1 − P•)2

)

P∗• = ρ
(
P 2◦ + 2P◦(1 − P◦)(P∗• + P•) + P∗•P•(1 − 4P◦ + 3P 2◦ )

)

P• = ρ
(
P 2• + 2P•(1 − P•)(P∗• + P◦) + P∗•P◦(1 − 4P• + 3P 2• )

)
.

(8)

A numerical solution of the above two systems of equations yields in both cases the coex-
istence of two solutions above a critical density smaller than one, thus for our hyperbolic
lattice via inequalities (3) and (4) we get

ρc(T
4,5,3) � 0.711 ≤ ρc({6,5},3) ≤ ρc(T

4,5,3) � 0.734, (9)

which provides a rather good estimate of the critical density for the hyperbolic lattice under
consideration. (The simpler bounds of (6) on the other hand provide ρc(T

4,2) = 1/3 ≤
ρc({6,5},3) ≤ ρc(T

4,3) = 8/9.)
For m = 4, the same method can be applied and the numerical solution of the corre-

sponding equations yields 0.940 ≤ ρc({6,5},4) ≤ 0.985. Thus, a transition also takes place
for m = 4 in the {6,5} lattice. Note that this gives one specific example of how to deal with
the case m = q − 1 for which the existence of a transition at a finite critical density cannot
be proved by simply using the spanning collection of regular trees of connectivity q − 1.

5 Order of the Transition

In the previous section, we have established the existence of a BP transition on appropriate
hyperbolic lattices at 0 < ρc < 1. Here we provide evidence supporting that this transition
has a first-order (i.e. discontinuous) character: the order parameter which corresponds to

3When we refer to the Bethe lattice, we think of an infinite tree-like structure as is the case for an infinite
Cayley tree. However, while the latter is constructed via the infinite volume limit of a finite tree and therefore
has a boundary at infinity (i.e. leaves), the Bethe lattice has no boundary.
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the probability that a given site is blocked is discontinuous at ρc . We also obtain numerical
indication of a diverging correlation length. Thus, the behavior resembles that of the BP
transition on tree-like structures such as Bethe lattices and random graphs.

Unfortunately, the analysis of the first-order character of the BP transition is much more
involved for hyperbolic lattices than for either Bethe or Euclidean lattices. In the latter cases,
one can simply measure the distribution of blocked sites. For a discontinuous transition,
this would show a characteristic double-peaked structure, with the peak centered on zero
corresponding to the absence of any blocked cluster and the other peak centered at a finite
distance from zero corresponding to the appearance of a finite fraction of blocked sites at
the transition. This strategy does not work for hyperbolic lattices because of the effect of
boundary sites. Due to the nonamenability of the lattices, one has to be very careful with
boundary effects, as we explain in the following.

5.1 Taking into Account Boundary Condition Effects: Discussion and Some Conjectures

We consider a hyperbolic lattice and a disk of large radius R centered on a given vertex
of the lattice which we refer to as the origin. We call boundary sites those that are outside
the disk but are connected to at least one vertex inside the disk. The vertices inside the disk
evolve according to the BP dynamics, starting from an initial configuration with a density
ρ and with the boundary vertices frozen to a configuration in which sites are independently
occupied with probability ρb . The influence of ρb on the final state inside the disk after the
bootstrap dynamics is a question that has not yet been addressed, even on trees. We make
two conjectures on this influence for nonamenable systems which display in infinite volume
a BP transition at 0 < ρc < 1. As will be shown in the following section, the validity of
these conjectures can be checked on the exactly solvable case of the Cayley tree (which is
a nonamenable graph and a special case of a hyperbolic lattice). Call P0(ρ,ρb) the limit as
R → ∞ of the probability that the vertex at the origin is blocked and ρ∗

b (ρ) the minimal
boundary density which gives a non zero P 0 (i.e. P 0(ρ,ρb) = 0 only if ρb < ρ∗

b (ρ)). We
conjecture that

• if the BP transition is discontinuous and ρ is infinitesimally above ρc then ρ∗
b > 0 (i.e.

limε→0+ ρ∗
b (ρc + ε) > 0).

• if the BP transition is continuous and ρ is infinitesimally above ρc , then ρ∗
b = 0 (i.e.

limε→0+ ρ∗
b (ρc + ε) = 0).

Figure 4 summarizes how to distinguish between continuous and discontinuous BP transi-
tions by using the above conjectures. Note that ρ∗

b is a monotonously decreasing function of
ρ since a larger initial bulk density requires the same or a lower boundary density to support
the bulk blocked particles. (In Fig. 4 we show a discontinuous case with limρ→1 ρ∗

b > 0, as
it happens on Cayley trees, see below. However in other cases this limit might be zero.)

Another important remark is that for BP with periodic boundary conditions one can take
as an order parameter either the fraction of blocked sites or the probability that the origin
is blocked. Here, by contrast, boundary conditions are fixed and the former definition is
not meaningful since the boundary may support a very large number of blocked particles
in its vicinity even though the clusters of blocked particles do not percolate. In general,
when dealing with nonamenable systems one should be careful because boundary effects
can propagate into the entire system. Several recent studies seem to overlook this point [2,
3, 5, 43, 44]. To properly control these effects, one should either study them explicitly as we
do here (see also [1, 4, 15, 52]) or use periodic boundary conditions [6, 28, 37, 38].
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Fig. 4 (Color online) Probability P for a vertex to be blocked depending on the initial density ρ and the
density at the boundary ρb for a continuous (in red) and a discontinuous (in blue) BP transition. ρc is the
density at the transition, Pc the nonzero probability for a vertex to be blocked at the transition when the latter
is discontinuous, ρ∗

b
(ρ) (the blue line in the P = 0 plane) the boundary density below which the system is

completely emptied for all values of the initial bulk density ρ, and ρ∗
b
(1) = ρ∗

b
(ρ = 1). The discontinuous

data are for a Cayley tree of connectivity q = 5 with m = 3: then, ρc = 68−5
√

10
72 � 0.7248 and Pc � 0.4132.

Note that the direction of the ρ axis is reversed to improve the readability of the figure

5.2 Cayley Tree

We now verify the conjectures of the previous section for a specific nonamenable graph,
the Cayley tree of connectivity q when 0 < ρc < 1, i.e. for 2 ≤ m ≤ q − 1. Thanks to the
tree structure, the following recurrence relation holds for the probability Pi that a vertex of
generation i is blocked assuming that its parent vertex of generation i − 1 is blocked:

Pi = ρ

q+1−m∑

k=1

(
q − 1
k − 1

)

P
q−k

i+1 (1 − Pi+1)
k−1. (10)

If the Cayley tree is infinite, translation invariance guarantees that Pi+1 = Pi = P and we
obtain from (10) a fixed point equation for P (the same property applies in the Bethe lattice
procedure). Furthermore, the probability P for a vertex to be blocked (without assuming its
parent to be blocked) satisfies

P = ρ

q−m∑

k=0

(
q

k

)

P q−k(1 − P )k. (11)

If P is nonzero, then P is nonzero too and from (10) one can compute the critical density ρc

at which the BP transition takes place [7]. The transition is continuous (P (ρc) = P (ρc) = 0)
for m = 2 and discontinuous for 3 < m < q − 1.

If instead we perform the finite volume procedure with frozen boundary conditions of
density ρb (say on generation n) detailed above, vertices are no longer equivalent and (10)
can be directly used to compute how Pi evolves when starting from the n-th frozen gener-
ation. The probability P 0 can be explicitly computed for any couple of values of ρ and ρb .
The outcome is plotted in Fig. 6. We can now check that the conjectures of Sect. 5.1 are
verified.
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Fig. 5 Generic graphical
representation of the recurrence
relation for the evolution of the
probability P that a vertex in a
Cayley tree is occupied and
blocked assuming its parent is
occupied and blocked; f (P ) is
the right-hand side of (10)

(a) Discontinuous transition (m > 2): ρ∗
b
(1) represents the threshold of

ρb below which the system is totally emptied when the density ρ = 1;
it corresponds to an unstable fixed point. P = 0 is always a stable fixed
point and an additional stable fixed point appears for ρ > ρc at high
values of P .

(b) Continuous transition (m = 2): there is one fixed point at P = 0
which is stable for ρ ≤ ρc and becomes unstable for ρ > ρc . Another
stable fixed point appears for ρ > ρc .

Call f (P ) the function such that the right-hand side of (10) corresponds to f (Pi). If
3 ≤ m < q − 1, f (P ) has only one stable fixed point at P = 0 for ρ < ρc , two fixed points
at ρ = ρc, P = 0 which is stable and P = Pc which is unstable, and three fixed points
for ρ > ρc , two stable ones and an unstable one, P u(ρ). In Fig. 5a, the evolution of Pi is
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Fig. 6 (Color online) Probability
P 0 that the central vertex is
occupied and blocked plotted as a
function of the initial bulk and
densities, ρ and ρb . Comparison
of the numerical results for the
{6,5} hyperbolic tiling (in blue)
and the analytical results for the
Cayley tree of connectivity 5 (in
red). The results are for a lattice
of 59561 vertices and are
averaged over 103 different
initial conditions for each value
of {ρ,ρb}

represented as a function of the initial condition Pn = ρb for a tree with n generations. If
ρ > ρc and ρb < P u then P0 goes to zero, whereas if ρb > P u then P0 goes to the second
attractive fixed point which has a nonzero value. Thus, by using the notation of previous
section, we obtain ρ∗

b (ρ) = P u(ρ) > 0 when ρ > ρc and our conjecture on discontinuous
BP transitions is verified for the Cayley tree. Note that since P u < Pc the bulk behavior on
the tree is identical to the behavior in the Bethe lattice procedure considered above when
ρb ≥ Pc , while for ρb < Pc , boundary effects have to be taken into account (see Fig. 6).
For the opposite case m = 2, the function f (P ) (see Fig. 5b) has always a fixed point at
P = 0, stable when ρ ≤ ρc and unstable otherwise, and a second stable fixed point appears
for ρ > ρc. Since the stable fixed point is always unique, the bulk behavior is not affected
by boundary conditions and ρ∗

b = 0 for any ρ > ρc . This result for the continuous transition
on the Cayley tree with m = 2 is compatible with our conjecture in Sect. 5.1.

5.3 Generic Hyperbolic Lattices

Due to the presence of loops in generic hyperbolic lattices, the iterative method used for
the Cayley tree cannot be applied and we are not able to prove the conjectures of Sect. 5.1.
However, accepting the validity of the conjectures, we obtain evidence that the transition
(when it exists) is discontinuous. Indeed, we can show that there is a nonzero boundary
density ρ∗

b below which the system is totally emptied at the end of the BP process.
Consider the hyperbolic lattice {p,q} with p > 4 and call T q,q−1 its spanning trees of

mixed connectivity q, q − 1 (see Sect. 3.2). As we did for Cayley trees in the previous sec-
tion, one can verify that the BP transition on T q,q−1 with facilitation parameter m + q − 1
is discontinuous for m > 3 and that ρ∗

b (T
q,q−1, ρ) > 0 for ρ ≥ ρc(T

q,q−1, q − m + 1).
As stressed in Sect. 4.1, if one performs BP with facilitation parameter q − m + 1, each
unblocked site on the spanning tree is also unblocked for BP on the {p,q} lattice with
the same facilitation parameter, i.e. with a blocking parameter m. Thus, ρc({p,q},m) ≥
ρc(T

q,q−1, q − m + 1) and ρ∗
b ({p,q}, ρ) ≥ ρ∗

b (T
q,q−1, ρ). As a consequence, we get

ρ∗
b ({p,q}, ρ) ≥ ρ∗

b (T
q,q−1, ρ) > 0 for ρ > ρc({p,q},m): the transition on the hyperbolic

lattice {p,q} with p > 4 and blocking parameter m > 3 is discontinuous provided one as-
sumes the validity of our first conjecture in Sect. 5.1. In the next section we numerically
analyze a case with m = 3 which is not covered by the above argument.
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Fig. 7 Evolution of the
probability P 0(ρ) for the central
site to be blocked for ρb = 1
when varying the system size R

between 2 and 14. The
corresponding number of vertices
goes from 27 to 3227991. One
can note that for ρ � 0.75, P is
independent of R

5.4 Simulation on the {6,5} Lattice: Role of Boundary Conditions and Diverging
Lengthscale

We have carried out a numerical simulation on the {6,5} hyperbolic lattice with blocking
parameter m = 3. The objective of this study is, on the one hand, to provide additional
evidence that the BP transition in hyperbolic lattices is discontinuous and, on the other hand,
to unveil the existence of a diverging lengthscale when approaching the BP transition from
low density.

Following the procedure of Sect. 5.1, we consider only the region inside a finite circle
of given radius R and the boundary sites are frozen with a density ρb. The system is initial-
ized by filling vertices inside the circle with a density ρ and the BP dynamics with m = 3
is recursively applied until no more vertices can be emptied. Our numerical results are ob-
tained with lattices of 27 to 3227991 sites, which corresponds to values of R from 2 to 14,
and are averaged over 103 realizations with identical conditions {ρ,ρb}. Figure 6 shows a
three-dimensional plot of the computed probability P 0 that the central site is occupied and
blocked, when ρ and ρb vary between 0 and 1.

By looking at the case ρ = 1, one can see that the system is completely emptied for
boundary densities smaller than ρb(1) � 0.24: thus, limε→0 ρ∗

b (ρc + ε) > 0 and, through the
first conjecture of Sect. 5.1, we conclude that the transition is discontinuous.

In order to support the above conclusion one should proceed to a finite-size study of the
case ρb = 1. The ρ-dependence of the probability P 0 for the central site to be blocked is
displayed in Fig. 7 for sizes ranging from R = 2 to R = 14. The data clearly point toward
the existence of a transition at nontrivial ρc ∼ 0.7, but they display strong finite-size effects
which of course always make P 0 a continuous function of ρ. A better description would
require a finite-size scaling analysis. However the sizes we can numerically investigate are
not large enough to allow a proper analysis (which is rather delicate as one knows from the
corresponding study in the Cayley tree). By analogy with the behavior on the latter graph we
expect that P 0(ρ) converges at large sizes to a function of the scaling variable R(ρc − ρ)0.5.

We stress that the finite-size effects also reveal the existence of a growing (and expect-
edly diverging) lengthscale when approaching the BP transition from low density, which is
quite distinct from what is encountered in usual first order phase transitions. Actually, the
finite-size effects indicate that for densities lower than some critical value ρc typical initial
configurations contain a finite fraction of blocked sites. It is only for system of large enough
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size that the boundary does not support blocked structures any more. This means that ap-
proaching the BP transition from low density in an infinite system, sub-regions of radius
less than a characteristic size are typically blocked and can be unblocked only by starting
from the boundary. Therefore, one expects that the dynamics of the corresponding FA model
will show diverging dynamical correlations at the ergodicity breaking transition. In order to
obtain the precise scaling of the dynamical correlations, additional work is however needed.

Finally, we note that, quite strikingly, the numerical results obtained for the {6,5} hyper-
bolic lattice are very similar (up to our numerical precision and to finite size effects) to the
exact ones for the Cayley tree of the same connectivity q = 5 (such a tree is not a subgraph
of the lattice). This is illustrated in Fig. 6. Qualitatively, the two systems appear to share
the same behavior: existence of a discontinuous transition with same critical density within
numerical uncertainty, same dependence with the boundary density, and same variation of
P 0 when ρ > ρc. The loops present (on all length scales) in the hyperbolic lattice do not
seem to affect much the phenomenology of BP on hyperbolic lattices.4

6 Conclusion

In this article, we have proved that BP displays a transition at a nontrivial threshold for ap-
propriate choices of the blocking parameter on hyperbolic lattices formed by regular tessel-
lations of the hyperbolic plane. This in turn implies that the kinetically constrained models
of the FA type have a dynamical transition at the same nontrivial threshold.5 Remarkably,
this transition occurs despite the presence of loops on all length scales in hyperbolic lattices.

We have moreover provided theoretical and numerical evidence (but admittedly, not a
rigorous proof) that the transition is first-order with a discontinuous jump of the order para-
meter. The characteristics of the transition are very similar to those on related tree structures.
In particular, we have numerically shown the existence of a diverging lengthscale when
approaching the BP transition from low density. This phenomenon is expected to induce
diverging dynamical correlations in the dynamics of the FA model close to the ergodic-
to-nonergodic transition. In fact, the dynamics of the associated FA kinetically constrained
models should also bear a strong resemblance with their counterparts on Bethe lattices and
random graphs, with a two-step relaxation in the ergodic phase and a jump of the nonergod-
icity parameter at the transition. In relation to glassforming liquids, this raises the intriguing
possibility that an ideal ergodicity-breaking transition as predicted by the Mode Coupling
Theory of glasses could exist for atomic liquids on the hyperbolic plane at low temperature,
in a regime which is dominated by scarce topological defects.

A question that remains open for BP on hyperbolic lattices, certainly deserving further
studies, is whether there exists a diverging correlation length when approaching the transi-
tion from the high-density phase. Such a correlation length has been shown [20, 41] to exist
for random graphs (or Bethe lattices) and, in this context, it is related to a square root singu-
larity of the fraction of blocked sites. Are these two phenomena also present for hyperbolic
lattices?

4This conclusion certainly does not apply to the case m = 2, for which ρc = 0 on the hyperbolic lattice
due to the presence of blocked structures, whereas a continuous transition takes place on Cayley trees. (To
corroborate the validity of our simulations we have also verified that indeed ρc � 0 for m = 2 on the {6,5}
lattice and that in this case the bulk behavior is not influenced by the boundary density.)
5By similar arguments one can also prove that a transition at a nontrivial threshold occurs on hyperbolic
lattices for Kob Andersen models [21], the conservative dynamics counterpart of FA models. We defer to
future work a detailed analysis of these conservative dynamics
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Finally, we conclude this work by stressing that hyperbolic lattices appear to be interme-
diate between random graphs and Euclidean lattices since they contain loops on all length-
scales and at the same time, because of the hyperbolic metric, are characterized by an ex-
ponential increase with the distance of the number of neighbors of a given site. It would
therefore be interesting to study glassy systems and optimization problems, which have re-
cently received much attention on random graphs [27], on hyperbolic lattices. Would new
phenomena take place or would the physical behavior remain the same despite the presence
of loops on all lengthscales? Would the cavity techniques [27] developed for random graphs
be useful to study glassy systems on hyperbolic lattices? We leave these questions for further
investigations.

Acknowledgements We acknowledge partial support from the ANR Dynhet and ANRBLAN07-2184264.

Appendix: Existence of Finite Blocked Clusters

First of all, it is easily realized that, whatever the values of p and q , finite blocked clusters
exist when m = 2. Indeed, the vertices of each elementary polygon of the lattice with p

edges can all be blocked irrespective of the state of the vertices not belonging to this polygon.
This occurs with a nonzero probability. When p = 3, another simple case arises: for m = 3,
clusters made of q +1 vertices (1 at the center and q around) are also blocked with a nonzero
probability.

A simple way to find values of m for which finite blocked clusters can never exist is to
use a kind of “convexity” argument. Assume that there exists a finite blocked cluster for BP
with blocking parameter m on a {p,q} lattice and consider its boundary, i.e. vertices that
are part of the cluster but connected to at least one unblocked vertex (this definition differs
from that used in Sect. 5.1). Each boundary vertex must have at least m neighbors in the
cluster. The tiling being regular, the angle between two edges joining a boundary vertex to
its nearest neighbors on the boundary is larger than 2π(m−1)/q . If 2π(m−1)/q > π , then
the angle at each boundary vertex is strictly larger than π and by convexity argument, the
cluster must be infinite. Thus, for m > q/2 + 1, no finite blocked cluster can exist. One can
easily check that the above arguments also hold in the case of Euclidean lattices.

We now show that the hyperbolic metric is such that finite blocked clusters exist only
for m = 2 for general p and m = 3 for p = 3. Indeed, the bounds on m can be refined.
A property of the hyperbolic metric is that there exist disks of infinite radius and area, but
with a boundary that does not follow a geodesic.6 Such disks are called “horodisks” and
their boundary a “horocircle”. One of the specificities of a horodisk is that its area is smaller
than that of the half-plane whose boundary is a geodesic, contrary to the Euclidean case in
which an infinite disk is equivalent to the half-plane. Obviously, clusters not contained in
any horodisk are infinite.

A geometric criterion sketched in Fig. 8 gives a condition on m for minimal clusters to
be infinite, i.e. not contained in any horodisk. For a given m, the smallest possible blocked
cluster has a regular boundary made of blocked vertices connected to 2 blocked neighbors
on the boundary, m − 2 blocked vertices inside the cluster and q − m vertices outside the
cluster. We do not consider the feasibility of such a cluster, but only whether it could be
finite or not. Take any boundary vertex of the cluster. For the cluster to be finite, it must at

6In the case of Euclidean geometry, a disk of infinite radius corresponds to a half space with a boundary
containing geodesics. In two dimensions, the disk boundary is a line.
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Fig. 8 (Color online) Geometric criterion to determine if finite blocked clusters can exist. We consider the
smallest blocked cluster, which has a regular boundary with a local angle equals to (m − 1)π/q (with m

the number of blocking neighbors and q the connectivity of the lattice). The blue disk indicates a horodisk
(disk of infinite radius and infinite area) whose limiting horocircle passes through a boundary vertex of the
blocked cluster (indicated by the green disk); the latter vertex possesses m blocked neighbors (also indicated
by green disks). 	∗ corresponds to the length of the chord along the geodesic between the chosen vertex on
the horocircle and one of its two neighbors on the cluster boundary. This length has to be compared with that
of the lattice edges 	. In the present case (m = 3 on a {6,5} lattice), 	∗ < 	 and no finite blocked clusters
exist. Note that the angle at the bottom of the blue triangle inscribed in the horocircle is zero, a specificity of
hyperbolic geometry

least be contained in one horocircle passing through this boundary vertex. However, this is
only possible if the chord length 	∗ along the geodesic joining the chosen vertex to one of its
neighbors on the cluster boundary is larger than the edge length 	 in the {p,q} lattice (see
Fig. 8). By using the fact that the cluster boundary is regular and by means of elementary
hyperbolic trigonometry (setting the curvature to −1), one finds

cosh(	∗) = cos2( (m−1)π

q
) + 1

sin2( (m−1)π

q
)

(12)

and

cosh(	) = cos2( π
q
) + cos( 2π

p
)

sin2( π
q
)

. (13)

Summarizing the above discussion, we conclude that if 	∗ < 	, or equivalently cosh(	∗) <

cosh(	), no finite blocked clusters can exist. Through (12) and (13), one obtains that for
p > 3, this inequality is verified for all values of m such that 2 < m ≤ (q − 1)/2 + 1 and for
p = 3 it is verified as soon as 3 < m ≤ (q −1)/2+1. No finite blocked clusters can therefore
exist for these values of m. One can note that values of m for which this inequality does not
hold correspond to those for which finite blocked clusters (with nonzero probability) can
easily be found (see above).

To sum up: on a {p,q} hyperbolic lattice, finite blocked clusters exist only when m = 2,
for all values of (p, q), and when m = 3, for p = 3 irrespective of the value of q .
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